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Descriptor Systems Subject to
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Abstract—This paper presents information filters in Riccati re-
cursions and in array algorithms for descriptor systems subject to
parameters uncertainties. The filters are developed in filtered and
predicted forms. The inversion of the state matrix is avoided in the
new information recursive formulas. Therefore, it turns out clear
that the invertibility of the state matrix, usually considered in the
state–space information recursions, is not necessary. A numerical
example is provided to illustrate the performance of the proposed
robust array algorithms.

Index Terms—Array algorithm, descriptor systems, information
filter, Kalman filter.

I. INTRODUCTION

THE Kalman filter has been one of the most widely used
tools for solving recursive estimation problems during the

last 50 years. However, early after its introduction, it was noticed
that the original algorithms presented some drawbacks related
to practical implementation issues.

Information filtering has been considered as an alternative ap-
proach to the covariance recursions of the original Kalman filter.
The filter algorithm in information form computes the inverse of
the covariance matrix (the so-called information matrix), ,
and computes the state information estimate . The ap-
plication of this approach is justified when, for example, there
exists poor information on the initial condition of the state
to be estimated. In this case, the information filter can be easily
initiated with information matrix zero, whereas the covariance
filter would invert very large covariance matrices. For some cat-
egory of problems, the advantage of the information form over
the covariance form becomes more evident. In multisensor envi-
ronments, information filter is easier to distribute, initialize, and
fuse than the Kalman filter [16]. It can reduce dramatically the
storage and computation involved with the estimation of certain
classes of large interconnected systems [2]. For more details on
information filtering see, for example, [1], [14], and [16] and
references therein.

On the other hand, array algorithms have been used to avoid
some computational problems related to Riccati recursions. It
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is known that round-off errors can cause a loss of positive-defi-
niteness of the computed covariance and information matrices.
Fundamentally, array algorithms reduce the dynamic range in
fixed-point implementations and assure better condition num-
bers than the conventional Kalman filter algorithm. More details
on array algorithms can be found in [2], [9], [10], [14], [15],
[24].

Recently, filtering and control of descriptor systems have
received great attention in the literature [3]–[7], [20], [21],
[25]–[28]. This interest is motivated by the fact that many
systems can be modeled naturally in descriptor formulation.
Applications include: economical systems [17], circuit sys-
tems [19], robotics [18], and aircraft modeling [23]. A signal
processing application of descriptor filters is encountered, for
example, in image restoration [8].

This paper develops information filters for descriptor sys-
tems for both nominal and robust versions. First, it is consid-
ered, Riccati equation-type formulation based on filtered and
predicted estimates of [11]. In the sequel, array algorithms for
the filtered and predicted information filters are derived. To the
best of the authors knowledge, robust information filters and
array algorithms for descriptor systems have not been addressed
in the literature yet.

In the literature for usual state–space systems without uncer-
tainties, Kalman filters in information form usually suppose the
invertibility of the state matrix [matrix in the model (1)]. In
this paper, nominal and robust information filters are developed
without the invertibility assumption. With this, the range of ap-
plicability of information filters is enlarged. The proposed ro-
bust information singular filters, reduced to the conventional
state–space systems [when collapses to identity in the
model (1)], can be compared with the robust filter in informa-
tion form of [22]. A drawback of the filter of [22] is the compu-
tation of the inverse of the information matrix at each iteration,
whereas our proposed filter iterates only the information matrix
(see Remark 2.4).

This paper is organized as follows. In Section II, the infor-
mation estimates in filtered and predicted forms for descriptor
systems, with and without uncertainties, are presented. In
Section III, array algorithms for descriptor information Kalman
filters are developed, and in Section IV, a numerical example
illustrates the performance of the proposed algorithms.

Notation

is the set of real numbers, is the set of -dimensional
vectors whose elements are in , is the set of real
matrices, and are the transpose and the pseudo-inverse

1053-587X/$20.00 © 2006 IEEE



2 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007

of the matrix , respectively, ( ) denotes that
is a positive definite (semi-definite) matrix, is the Euclidian
norm of , is the weighted norm of defined by

.

II. INFORMATION FILTERS FOR DESCRIPTOR SYSTEMS

The information filters and the array algorithms to be pre-
sented in this paper were developed to estimate the following
uncertain discrete-time linear stochastic descriptor system

(1)

where is the descriptor variable, is the mea-
sured output, and are the process and mea-
surement noises, , and
are the known nominal system matrices, and , and

are time-varying perturbations to the nominal system ma-
trices defined as

(2)

(3)

(4)

(5)

where , , , , are known matrices and
is an arbitrary bounded matrix. The initial condition, the

process and measurement noises, , are assumed
uncorrelated zero-mean random variables with second-order
statistics

(6)

where if and otherwise.

A. Nominal Estimates

The filters for the nominal system of (1) (when ,
, and ) solve recursively the following

problems:
1) the linear least-mean-squares filtered estimate

(7)

2) the linear least-mean-squares predicted estimate

(8)

The filtered estimate recursion that solves the problem 1) is
given by [12], [20]

(9)

(10)

Remark 2.1: As it was demonstrated in [12], for the existence
of a recursive solution of (9), it is required that has

full column rank for all . It is easy to observe that for the
usual state–space systems, this condition is always satisfied.

The predicted estimation for the problem 2) is given by (11)
and (12)

(11)

(12)
The existence of this predictor filter is guaranteed when has
full column rank. The proof of this condition can also be seen
in [12]. The filtered and predicted estimates presented above
depend on the matrix . In order to express these filters in
information form, where the filtering algorithms are constructed
to evaluate only , the known matrix inversion Lemma1 and
some algebra are used.

1) Filtered Information Estimate: The filtered estimate in
information form is given by the following equations:

(13)

(14)

Equation (14) is obtained from (10) according to Appendix V-A.
Note that (14) is a recursion for the filtered information esti-
mate which can be obtained without needing to com-
pute . Because (11) and (14) propagate the inverse of the
error covariance, these equations can be used in cases where
there exist no information about part or the whole initial condi-
tion (zeros in are related with infinity values in ).

Remark 2.2: It can be noted that, even for usual state–space
systems (when ), the main advantage of (14) if compared
with the usual information filter found in the literature (cf., e.g.,
[14, Ch. 9, p. 322]), is that the invertibility of the state matrix

is not necessary. This property can be verified in all other
information filters developed in this paper.

2) Predicted Information Estimate: The predicted estimate
recursion, (11)–(12), in information form can be written, after
some algebra, as

(15)

and

(16)

1(A+BDC) = A �A B (I +DCA B) DCA .
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The guidelines to obtain (16) can be seen in Appendix V-B.

B. Robust Information Estimates

The robust estimates in information form of the uncertain
system (1), to be presented in this section, are based on the ro-
bust singular filters given in [11]. Here, in order to simplify the
filters expressions, it is assumed that . There is
no loss of generality in adopting this assumption since the ma-
trices , and in the error modeling (2) and (3)
can be always rewritten in order to satisfy this condition, as for
example

where are , , and are matrices of appropriate
dimensions.

For the original optimal robust filtered estimates, the fol-
lowing sequence of robust data fitting problems are proposed:
for solve

(17)

and for solve (18) as shown at the bottom of the page
where the uncertainties are modeled as (2)–(5).

Remark 2.3: Observe that all information filters devel-
oped in this paper are written in terms of and

, according to the functionals originally defined
to solve these problems.

The filtered and predicted robust descriptor filters to be con-
sidered were deduced based on optimization problems defined
in the following fundamental lemma [22].

Lemma 2.1: Consider the problem of solving

(19)

where is the data matrix, is the measurement vector which is
assumed to be known, is the unknown vector, ,
and are given weighting matrices, are
perturbations modeled by

(20)

The solution of the optimization problem (19) is given by

(21)

where the modified weighting matrices are defined by

(22)

(23)

and is a nonnegative scalar parameter obtained by following
optimization problem:

(24)
where

(25)
The auxiliary functions are defined by

1) Robust Filtered Information Estimate: The robust sin-
gular filter based on the solutions of (17)–(18) is developed in
[11]. It is not reproduced here due to space limitations. With
the same arguments used to deduce the nominal information fil-
ters aforementioned, it can be shown that the robust filter for
the system (1) in information form can be computed by the fol-
lowing algorithm.

Step 0: (Initial Conditions): If then

(26)

Otherwise determine the optimum scalar parameter by
minimizing the function of (24) with the identifications
(67) over the interval and set

(27)

Step 1: If and then . Otherwise
determine the optimum scalar parameter by minimizing the
function of (24) with the identifications defined in (66)
(see the Appendix V-C) over the interval

and replace the given parameters by the
corrected parameters

(28)

(29)

(18)



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007

Step 2: Update

(30)

as (31) and (32).

(31)

(32)

One can observe that full column rank is a sufficient

condition for the existence of this robust filter [11].
Remark 2.4: The robust information filter for singular sys-

tems developed in this section can be compared with the ro-
bust filter presented in [22, Table 3, p. 265]. With ,

, and , the filter (31)–(32) reduces to
the following state–space robust filter:

(33)

(34)

and the state–space robust information filter of [22] is given
by (the notation of [22] was changed to for easy
comparison)

(35)

where

One can observe that this filter is not a genuine information
filter. It is necessary to compute and in (35).

2) Robust Predicted Information Estimate: Similar to the ro-
bust filtered estimates, to update the robust predicted estimate
from to , it is solved the following opti-
mization problem for as shown in (36) at the bottom of the
page where the initial conditions are , ,
and the uncertainties are modeled as (2)–(5). The information
version of the robust predicted estimate can be computed by the
following algorithm

Step 0: (Initial Conditions):

(37)

Step 1: If and , then set . Otherwise
determine the optimum scalar parameter by minimizing the
corresponding function of (24) with the identifications
defined in (68) (see the appendix V-C) over the interval

(38)
Step 2: If , replace the given parameters
by the corrected parameters

where is given by

(39)

Step 3: Update

(40)

as (41) and (42).

(41)

(42)

(36)
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Fig. 1. Unitary transformation (U.T.) in array algorithm.

As it is detailed in [11], the existence of the filtered estimate
does not assure the existence of the predicted estimate for de-
scriptor systems, where the future dynamic has influence on the
present state, then (36) was defined to solve the predicted case.
For the existence of this robust predicted filter it is sufficient

full column rank.

III. ARRAY ALGORITHMS FOR DESCRIPTOR KALMAN FILTERS

This section develops array algorithms to compute solutions
for the Riccati equations of the information filters developed in
the previous section. Array algorithm is an alternative way to
solve recursive equations instead of the explicit ones. It prop-
agates a square-root factor of a variable, which is defined for
a positive semidefinite matrix by a matrix
so that . These square-root factors are not unique.
Defining as a unitary matrix and , can
be defined as square-root factor of . This factor can be unique
if additional constraints are defined, for example if is consid-
ered triangular or Hermitian. Actually, Hermitian factor is the
true square-root factor because and can be
written as . Usually, the square-root factors of a re-
cursive equation can be propagated by array algorithms in the
following manner [14].

1) It is created a pre-array based on -instant data.
2) This pre-array is transformed in a specified shape (usually

triangular) using a sequence of elementary unitary trans-
formations (rotations or reflexions).

3) The desirable values at -instant can be immediately
read at the post-arrays.

There is no explicit equation computation. This procedure is
resumed by Fig. 1.

The deduction of these array algorithms are based on the fol-
lowing Lemma.

Lemma 3.1: [14] Let and be ( ) matrices.
Then if, and only if, there exists an unitary
matriz ( ) such that .

A. Filtered Information

The filtered information estimate computes the inverse
of a Riccati recursion. In order to achieve an array algorithm that
propagates the square-root factor , the right side of (11) is
written as Schur complement2 of
in

(43)

2Schur complement of A in M =
A B

C D
is given by � � D �

CA B.

According to Lemma 3.1, one must find an equality
. Then, first, (43) is factorized as where

(44)

Using other property of Schur complement3, (43) can be written
as

(46)

where is Hermitian and
positive-definite. With (46), (43) can be factorized as
where

(47)

The array algorithm for the filtered estimate, in information
form, is explicitly established via (47), (44), and a unitary matrix

, as

(48)

B. Predicted Information

Following the procedure used to find the array algorithm for
the information filtered estimate, the predicted information es-
timate computed by (15) is rewritten as Schur complement of

in

(49)
Equation (49) is factorized as where

(50)

Following the same decomposition defined in the footnote (45),
(49) can be factorized as , where

(51)

3A block matrix
A B

C D
can be factorized as

A B

C D
=

I 0

CA I

A 0

0 �

I A B

0 I
: (45)
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with and

.
Then, there exists a unitary matrix such that the array algo-
rithm for the information predicted form can be computed as
(52) as shown at the bottom of the page.

C. Robust Filtered Information

Considering , the right
side of (31) can be written as the Schur complement of

in

(53)

that can be factorized as , where is defined
in (54) as shown at the bottom of the page. (52) can be also
rewritten as

(55)

and

(56)

Therefore, based on Lemma 3.1, the array algorithm for robust
filtered estimate of singular systems, in information form, is
given by (57) as shown at the bottom of the page.

D. Robust Predicted Information

Following the line adopted to deduce the array algorithm for
the nominal predicted estimate, and observing the similarities
between (15) and (41), the array algorithm for the robust pre-
dicted estimate is given by (58) as shown at the bottom of the
page.

IV. NUMERICAL EXAMPLE

A numerical example was performed in order to com-
pare the descriptor information filters, in nominal and
in robust forms (13) and (31), with their array versions
(48) and (57), respectively. The singular values of

( ) were computed first for the
Riccati equations via Matlab double precision floating-point
processing (this floating-point processing was used as refer-
ence, for comparison), and second for the Riccati equations and
array algorithms were computed via Matlab (Simulink toolbox)
16-bit fixed-point architecture. The nominal model of (1) is
considered as

(59)

(52)

(54)

(57)

(58)
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TABLE I
MSE BETWEEN FIXED-POINT AND FLOATING-POINT

IMPLEMENTATIONS OF � (P )

and the uncertainties of (1) as

(60)

Table I shows the mean square error (mse) between the
fixed-point and floating-point implementations, computed via
singular values of , defined as

mse (61)

where the Riccati equations and array algorithms are computed
for the nominal model with parameters (59) and for the model
with uncertainties (60); is the number of iterations. When the
floating-point configuration is used to compute , the results
obtained through array algorithm and Riccati equation are al-
most the same, as it was expected. One can observe in Table I the
advantage of array algorithms for nominal and robust descriptor
filters. The adjust of the robust filter, (31) and (57), was per-
formed as for all . Fig. 2 displays the singular values of

for robust descriptor filtering in information form for three
different implementations: Riccati equation computed through
the floating-point processing; Array algorithm and Riccati equa-
tion computed via fixed-point processing. One can observe that
the array algorithm implemented with a fixed-point configura-
tion has produced the same results obtained when floating-point
configuration is used, the singular values of are almost the
same. There exist expressive differences between the singular
values when is computed via Riccati equation and with a
fixed-point configuration.

V. CONCLUSION

This paper has developed Kalman-type recursive estimates
of descriptor systems in filtered information and predicted in-
formation versions for nominal and robust estimation problems.
The respective array algorithms have also been presented. These
new information filters do not require the invertibility of the ma-
trix for four important filtering classes: of robust descriptor
systems, of robust state–space systems, and of the respective

Fig. 2. Singular values of P for robust descriptor filtering, in information
form, for three different implementations.

nominal descriptor and state–space systems. The proposed ro-
bust information filters and array algorithms, are the first filters
developed in the literature for uncertain descriptor systems and
also for uncertain state–space systems. The only robust infor-
mation filter that was found, presented in [22], is not exactly a
robust information filter. The numerical example shows that in
fixed-point implementations, the information matrices obtained
by array algorithm are closer to the correct values (the results
obtained via floating-point are assumed as reference) than those
obtained by Kalman-type implementation.

APPENDIX A
NOMINAL FILTERED INFORMATION FILTER

Equation (14) is obtained after the following algebra: first
it is applied the matrix inversion Lemma in (10) and is
multiplied in both sides of the equality

and then is put in
evidence.

APPENDIX B
NOMINAL PREDICTED INFORMATION FILTER

To obtain (16), the matrix inversion Lemma is applied in (12)
and is multiplied in both sides of the equality

(62)
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This equation can be rewritten as

(63)

Using again the matrix inversion Lemma and multiplying
the last term of (63) by

, one obtains

(64)

putting in evidence , (64) can be
rewritten as

(65)

and then, withdrawing of the inverse and rewriting
as one ob-

tains (16).

APPENDIX C
ROBUST INFORMATION FILTERS

To compute the optimal robust filtered estimates, the fol-
lowing identifications are required in Lemma 2.1 to find

(66)

and for the initial condition, the following identifications are
considered:

(67)

To compute the optimal robust predicted estimates, the fol-
lowing identifications are required in Lemma 2.1 to find :

(68)

More details of these proofs can be seen in [13].
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